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ABSTRACT  
The aim of this research is to propose the bounded exponentiated exponential (BEE) 
distribution for modeling the datasets on the unit interval e.g., between [0,1]. The proposed 
unit interval distribution is used to develop a quantile regression model. Continuous 
probability distributions are very useful to model lifetime data sets. Every single 
probability distribution is not suitable for all kinds of data sets. Therefore, proposing a new 
density can always be useful if showing the versatility and flexibility in it. Bounded 
exponentiated exponential distribution is developed by transforming the variable. The 
proposed density function exhibits different shapes which show its flexibility over different 
kinds of data sets. Many statistical and reliability properties of the BEE distribution have 
been developed. Few estimations methods have been discussed to estimate the parameters 
of the BEE distribution and a monte Carlo simulation study has been done.  Subsequently, 
the applications of the BEE distribution are illustrated using COVID-19 data. Finally, several 
properties of the quantile regression model are derived, and the model is also applied on a 
unit interval response variable data set. For the purpose of modeling dependence between 
measures in a dataset, a bivariate extension of the proposed distribution is also developed. 
Furthermore, the bivariate model can be extended toward the development of its 
properties and applications. 

Keywords: 
BEE Distribution, Bivariate Extension, Bounded, Exponentiated Exponential, 
Quantile Regression 

Introduction 

 
Modeling and prediction for diseases are the crucial responsibilities of 

epidemiologists and researchers as well who are interested in the estimation and chances 
of the occurrence of diseases. Probability distributions play a vital role in implementing 
these responsibilities, by modeling the adaptability in the occurrence of diseases. Many 
researchers have proposed several new probability distributions discrete and continuous 
as well for modeling the number of infections, mortality rate, and recovery rate during the 
novel coronavirus disease (COVID-19) and its impact on humankind.  Midst the proposed 
probability distributions for modeling diseases, those defined on unit interval play an 
important role to their appropriateness in the areas such as health, psychology, and 
epidemiology. For example, the researcher might be interested in modeling the mortality 
rate or recovery rate and in such situations, the variables are usually proportions, fractions, 
or rates which are defined in the unit interval. In such situations the modeled distribution 
should also be bound with the unit interval domain. Although beta distribution is the oldest 
distribution based on unit interval but due to the complexity of its cumulative distributions 
function (CDF) and quantile function, new probability distributions defined over unit 

http://doi.org/10.35484/ahss.2023(4-IV)05


 
Annals of  Human and Social Sciences (AHSS) October-December,2023 Vol 4,Issue 4 

 

52 

interval are developed whose CDFs and quantile function are manageable. Recently 
proposed unit interval probability distributions are unit gamma/Gompertz distribution, 
Bantan et al. (2021); bounded odd inverse Pareto exponential distribution Nasiru et al. 
(2021); bounded shifted Gompertz distribution, Jodra (2020); unit modified Burr-III 
distribution Haq et al. (2020); unit generalized half normal distribution Korkmaz (2020); 
unit Lindley distribution Mazucheli et al. (2019); unit Gompertz distribution, Mazucheli et 
al. (2019); logit slash distribution, Korkmaz (2019); unit Weibull distribution, Mazucheli et 
al, (2018); unit inverse Gaussian distribution Ghitany et al. (2018). 

In spite of the presence of many unit interval probability distributions in the 
literature, no single distribution is proficient in modeling all types of data afterward during 
the data generating process the produced data may have different features such as 
symmetric, skewed, varied degrees of kurtosis and monotonic and non-monotonic hazard 
rates.  Here in this research, we proposed a new unit distribution named as bounded 
exponentiated exponential (BEE) distribution. The impetus for the newly proposed 
probability distribution is to provide a model for modeling intricate data on the unit interval 
that shows platykurtic, leptokurtic, reversed J, left/right skewed, bathtub and J shapes; to 
develop a bivariate distribution for modeling independence between random data on the 
unit interval; to develop a quantile regression model for understanding the relationship 
between a response variable and given covariates.  

Methedology 

Development of Bounded Exponentiated Exponential (BEE) Distribution 

A random variable X follows the Exponentiated Exponential Distribution if the Cumulative 
density function (CDF) and the Probability density function (PDF) are as defined below 

 𝐹(𝑦) = (1 − 𝑒−λy)
𝛼

                                                             (1)  

and 

 𝑓(𝑦) = 𝛼λ𝑒−λy(1 − 𝑒−λy)
𝛼−1

                                               (2)  

Now, we propose a new distribution named bound exponentiated exponential 
distribution (BEED) by the transformation of Y = 𝑒−𝑋 → X = -log(Y). The CD of the (BEED) is 
obtained as follows 

𝐹𝑌(𝑦;  𝛼, λ) = 𝑃(𝑒−𝑋 ≤ 𝑦) 

𝐹𝑌(𝑦;  𝛼, λ) = 1 − 𝐹𝑋(−log(Y);  𝛼, λ) 

Finally, we get, the CDF of the (BEED) is given below 

 𝐹(𝑦) = 1 − (1 − 𝑦λ)
𝛼

, 0 < y < 1, 𝛼, λ > 0                          (3)  

Where 𝛼 is the shape and λ is the scale parameter. 

The probability density function (PDF) of (BEED) is given below 

𝑓(𝑦) = 𝛼 λ𝑦λ−1(1 − 𝑦λ)
𝛼−1

 , 0 < y < 1, 𝛼, λ > 0                          (4)      
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Figure 1. PDF (left) HRF (right) of the BEE distribution 

From figure 1, from the PDF plot it can be observed that the BEE distribution 
exhibits a variety of shapes as symmetric, left and right skewed, U-shaped. The graph of 
hazard rate function (HRF) of the BEE distribution shows the bathtub and increasing trend 
for different values of parameters.  

Results and findings: The finding and results of the article has been devided into some 
section explained as reliability measures, some statistical properties, bivariate extemsion, 
estimation of parameters, simulations, applications and quantile regression model.   

Reliability measures 

In this section a few reliability measures as survival (reliability) function, hazard 
rate function, cumulative hazard rate function, reversed hazard rate function, odd function, 
mills ratio, elasticity, and   

The survival function of BEED is given as   

  𝑆(𝑦) = (1 − 𝑦λ)
𝛼

                                                             (5)  

The Hazard rate is the death rate of a subject of given age y. The hazard function of 
(BEED) drive below 

ℎ(𝑦) =
𝛼 λ𝑦λ−1(1−𝑦λ)

𝛼−1

 (1−𝑦λ)
𝛼                                                (6) 

The cumulative hazard rate function of the BEED is  

 𝐻(𝑦) = −𝛼𝑙𝑜𝑔[1 − 𝑦𝜆] 

The Reverse Hazard Function is the ratio of the life probability density to its 
distribution function. The reverse hazard function of BEED drive below 

𝑟ℎ(𝑦) =
𝛼 λ𝑦λ−1(1−𝑦λ)

𝛼−1
 

1 − (1−𝑦λ)
𝛼                                                           (7) 

The odd function of the BEED is  

𝑂(𝑦) =
1−[1−𝑦𝜆]

𝛼

[1−𝑦𝜆]
𝛼                                                                             (8) 

The mills ratio for the BEED is 
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𝑀(𝑦) =
(1−𝑦𝜆)

𝛼

𝛼 λ𝑦λ−1(1−𝑦λ)
𝛼−1

 
                                                            (9) 

The elasticity for the BEED is 

𝜀(𝑦) =
𝛼 λ𝑦λ(1−𝑦λ)

𝛼−1
 

1−(1−𝑦𝜆)
𝛼                                                                (11) 

Some Statistical Properties of BEED  

In this section several important properties including quantile function, median, rth 
moments, mgf, mean, variance, incomplete moments, Lorenz and Bonferroni curves of BEED 
have been investigated. Numerical values for the first four moments, variance, standard 
deviation, measures of skewness and kurtosis, and coefficient of variation have been 
presented in table 1.  

The Quantile function of the BEED is 

 
𝑄(𝑦; 𝛼, 𝜆) = 𝑦𝑞 = [1 − (1 − 𝑞)

1
𝛼⁄ ]

1
𝜆⁄

                                      (12) 
 

The median and Inter Quartile Range for the BEED can be calculated as Median = 
𝑦0.5 and IQR = 𝑦0.75 − 𝑦0.25. 

The 𝑟𝑡ℎ moments of BEED are given by 

𝜇𝑟
′ = 𝛼𝐵 (

𝑟

𝜆
+ 1, 𝛼)                                                     (13)  

The mean of the BEED is 

𝜇1
′ =

𝛼Γ(1 𝜆⁄ )Γ(𝛼)

(1 + 𝛼𝜆)Γ(
1

𝜆
 + 𝛼)

                                                                          (14) 

The variance of the BEED is  

𝜎2 =
2𝛼Γ(2 𝜆⁄ )Γ(𝛼)

(2 + 𝛼𝜆)Γ(
2

𝜆
 + 𝛼)

− (
𝛼Γ(1 𝜆⁄ )Γ(𝛼)

(1 + 𝛼𝜆)Γ(
1

𝜆
 + 𝛼)

)

2

                                                 (15) 

 

The SD (Standard deviation), CV (coefficient of variation), CS (Coefficient of 
Skewness), and CK (Coefficient of Kurtosis) from the Central moments from the following 
formulas given below 

Standard deviation = √𝜇2  

Coefficient of Skewness /𝛽1 = 
𝜇3

2

𝜇2
3 

Coefficient of Kurtosis /𝛽2 = 
𝜇4 

𝜇2
2  
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Table 1 
Values of moment measures, including the SD, CV, CS and CK. 

𝝁𝒓
′  𝜶 = 0.4, 𝝀 = 2.5 𝜶 = 0.4, 𝝀 = 2.5 𝜶 = 20, 𝝀 = 1.5 

𝜇1
′  0.845234 0.526464 0.119228 

𝜇2
′  0.750028 0.305664 0.020337 

𝜇3
′  0.683809 0.190082 0.004329 

𝜇4
′  0.634227 0.124461 0.001079 

SD 0.188701 0.168819 0.078241 
CV 1.431727 1.450113 1.559052 
CS 0.382065 0.011103 -0.02134 
CK 0.008592 0.007327 0.010044 
 
Table 1 indicates that CS is positive and negative as well for different parametric 

values, the BEED can be positively/negatively skewed. The CK shows values less than 3, it 
reveals that the BEED is showing the platykurtic trend.  

Theorem 1. The 𝑟𝑡ℎ incomplete Central moment of EED is given below 

𝜑𝑟 = 𝛼𝐵 (𝑦λ;  
𝑟

𝜆
+ 1, 𝛼)                                                                  (16) 

Where 𝐵(𝑧; 𝛼, 𝛽) = ∫ 𝑦𝛼−1𝑧

0
(1 − 𝑦)𝛽−1dy, it is known as the Beta function. 

Proof. 

𝜑𝑟 = 𝐸(𝑦𝑟) = ∫ 𝑦𝑟𝑓(𝑦)
𝑦

0

𝑑𝑦 

𝜑𝑟 = ∫ 𝑦𝑟𝛼 λ𝑦λ−1(1 − 𝑦λ)
𝛼−1

𝑦

0

𝑑𝑦 

So, the above expression becomes the Beta Function given in eq. (16).  

Theorem 2. The moment generating function of BEED is given below 

𝑀𝑦(𝑡) = 𝛼 ∑
𝑡𝑛

𝑛!
∞
𝑛=0  𝐵 (

𝑟

𝜆
+ 1, 𝛼)                                                     (17) 

Proof. 

𝑀𝑦(𝑡) = 𝐸(𝑒𝑡𝑦) = ∑
𝑡𝑛

𝑛!

∞

𝑛=0

𝜇𝑟
′  

We know that 𝜇𝑟
′ = 𝛼𝐵 (

𝑟

𝜆
+ 1, 𝛼). So, the above expression gives the result in eq. (17).  

Theorem 3. The Lorenz curve 𝐿𝐹(𝑦) for incomplete moments is defined as 

LF(y) =
α

μ
𝐵 (𝑦; 

1

𝜆
+ 1,𝛼)                                                            (18) 

Where 𝐵(𝑧; 𝛼, 𝛽) = ∫ 𝑦𝛼−1𝑧

0
(1 − 𝑦)𝛽−1dy, it is known as the Beta function. 
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Proof. 

LF(y) =
1

μ
∫ y f(y)

y

0

𝑑𝑦 

LF(y) =
1

μ
∫ y𝛼 λ𝑦λ−1(1 − 𝑦λ)

𝛼−1
 

y

0

𝑑𝑦 

So, the above expression becomes the function given in eq. (18).  

Corollary 4. Bonferroni curve B𝐹(𝑦) is defined as 

BF(y) =
LF(y)

F(y)
 

BF(y) =

α

μ
 B(𝑦; 

1

𝜆
+1,𝛼)

1 − (1−𝑦λ)
𝛼                                                               (19) 

Bivariate Extension 

Modeling the relationship between two quantitative variables may be of interest to 
researchers. For example, one could be interested in modelling the link between an 
individual's age and BMI or might be interested in investigating independence/dependence 
between variables. Consequently, bivariate distributions can be utilized to get these 
estimations. The bivariate distributions can be used in reliability analysis, queuing theory, 
finance and indemnity risk analysis. This section proposed a bivariate extension of BEED 
abbreviated as BE-BEED. The CDF and PDF of BE-BEE distribution is shown below for a 
bivariate continuous random vector (X, Y). 

 
𝐹𝑋,𝑌(𝑥, 𝑦; 𝜼 ) =

[1 − (1−𝑥λ)
𝛼
][1 − (1−𝑦λ)

𝛼
]

{1 − (𝛿1+𝛿3)(1−𝑥λ)
𝛼
+ (𝛿2+𝛿3)(1−𝑦λ)

𝛼
}
−1                 (20) 

 

 

 𝑓𝑋,𝑌(𝑥, 𝑦; 𝜼 )

=

(𝛼λ)2(𝑥𝑦)λ−1[(1 − 𝑥λ)(1 − 𝑦λ)]
𝛼

[
(2𝛿2 + 2𝛿3)(1 − 𝑦λ)

𝛼
− (2𝛿1 + 2𝛿3)(1 − 𝑥λ)

𝛼

− 𝛿2 + 𝛿1 + 1
]

(1 − 𝑥λ)(1 − 𝑦λ)
 

 

 

where 𝛼, 𝜆 > 0, -1< 𝛿1 + 𝛿3< 1, -1< 𝛿2 + 𝛿3< 1, 0 < x < 1, 0 < y < 1 and  

(21) 

𝜼 = (𝛼, 𝜆, 𝛿1, 𝛿2, 𝛿3 )
𝑻. The parameters 𝛿1, 𝛿2 and 𝛿3 quantify the dependency 

between a BE-BEED random vectors of two variables.  

Figure 2 shows the CDF graphs for the given parameter values. 

i- 𝛼 = 3.5, λ = 8.2, 𝛿1= 0.3, 𝛿2= 0.1, 𝛿3= 0.3; 

ii- 𝛼 = 2.5, λ = 0.8, 𝛿1= 0.5, 𝛿2= 0.4, 𝛿3= 0.2 and 

iii- 𝛼 = 0.5, λ = 4.8, 𝛿1= -0.3, 𝛿2= -0.7, 𝛿3= -0.1 
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Figure 2. CDF plots of the BE-BEE distribution 

 

Figure 2 shows the PDF graphs for the given parameter values. 

i- 𝛼 = 3.5, λ = 8.2, 𝛿1= 0.3, 𝛿2= 0.1, 𝛿3= 0.3. 

ii- 𝛼 = 2.5, λ = 0.8, 𝛿1= 0.5, 𝛿2= 0.4, 𝛿3= 0.2 and 

iii- 𝛼 = 0.5, λ = 4.8, 𝛿1= -0.3, 𝛿2= -0.7, 𝛿3= -0.1 

 

 

  

 

 

 

Figure 3. PDF plots of the BE-BEE distribution 

Estimation of Parameters  

This section describes six methods of estimation for estimating the parameters of 
the BEED distribution. Maximum likelihood estimation (MLE), Ordinary least squares (OLS), 
Weighted least squares (WLS), Cramér-von Mises (CVM), Percentile (PC) estimation, and 
Anderson-Darling (AD) approaches.  

Maximum Likelihood Estimation 

Suppose that Y follows the BEE distribution, then we have  

 𝑙 = 𝑙𝑜𝑔(𝛼 λ) + (λ − 1)𝑙𝑜𝑔(𝑦) + (𝛼 − 1)𝑙𝑜𝑔(1 − 𝑦λ)                     (22)  

To find the value of the "𝜶", taking derivative of Equation (22) with respect to 𝜶 and 
we obtain 

 𝑑ℓ

𝑑𝛼
=

1

𝛼
+ 𝑙𝑜𝑔(1 − 𝑦λ)                                            (23)  

And to find the value of the "λ", taking derivative of Equation (22) with respect to 𝝀 
and we obtain 
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 𝑑ℓ

𝑑𝜆
=

1

𝜆
+ 𝑙𝑜𝑔(𝑦) − 

𝜆𝑦𝜆−1(𝛼−1)

(1−𝑦λ)
                                    (24)  

However, as a result the equations have not a closed form and can be solved 
numerically to find the parameter estimates. 

4.2. Ordinary and Weighted Least Squares Estimation 

Suppose that 𝑌𝑖, 𝑖 = 1,2,… , 𝑛  denotes the order statistics from a sample of size n, 
and we have 

𝐸[𝐹(𝑌(𝑖))] =
𝑖

(𝑛 + 1)
 

The least square estimator parameters "𝛼" and "𝜆" are estimated by minimizing 

 
𝑄(𝛼, 𝜆) = ∑ [𝐹(𝑌(𝑖:𝑛)|𝛼, 𝜆) − 

𝑖

(𝑛+1)
]
2

𝑛
𝑖=1                        (25) 

 

In the case of Bound Exponentiated Exponential distribution, eq. (25) becomes 

 
𝑄(𝛼, 𝜆) = ∑ [1 − (1 − 𝑦(𝑖)

𝜆 )
𝛼

− 
𝑖

(𝑛+1)
]
2

𝑛
𝑖=1                             (26) 

 

To find the estimates of the "𝜶" and "𝝀", take partial derivative of Equation (26) with 
respect to the parameters. The following equations are 

 ∑ [1 − (1 − 𝑦(𝑖)
𝜆 )

𝛼
− 

𝑖

(𝑛+1)
]𝑛

𝑖=1 ∆𝑠(𝑦(𝑖)|𝛼, 𝜆) = 0, 𝑠 = 1,2.                 (27)  

where  

∆1(𝑦(𝑖)|𝛼, 𝜆) = 𝑙𝑛(1 − 𝑦(𝑖)
𝜆 )(1 − 𝑦(𝑖)

𝜆 )
𝛼

 

and 

∆2(𝑦(𝑖)|𝛼, 𝜆) = 𝛼𝑦(𝑖)
𝜆 ln(𝑦(𝑖))(1 − 𝑦(𝑖)

𝜆 )
𝛼−1

 

The WLS estimates  �̂�𝑾𝑳𝑺 and �̂�𝑾𝑳𝑺, can obtain by minimizing 

𝑊𝐿𝑆(𝛼, 𝜆) = ∑
(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
𝑛
𝑖=1 [𝐹(𝑌(𝑖:𝑛)|𝛼, 𝜆) − 

𝑖

(𝑛+1)
]
2

                                  (28) 

 

𝑊𝐿𝑆(𝛼, 𝜆) = ∑
(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
𝑛
𝑖=1 [1 − (1 − 𝑦(𝑖)

𝜆 )
𝛼

− 
𝑖

(𝑛+1)
]
2

                               (29) 

 

To find the estimates of the "�̂�" and "�̂�", take the partial derivative of Equation (29) 
with respect to the parameters. The following equations are 

∑
(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
𝑛
𝑖=1 [1 − (1 − 𝑦(𝑖)

𝜆 )
𝛼

− 
𝑖

(𝑛+1)
] ∆𝑠(𝑦(𝑖)|𝛼, 𝜆) = 0, 𝑠 = 1,2.                (30) 

Where ∆𝑠(𝑦(𝑖)|𝛼, 𝜆) = 0, s = 1, 2 is define above  
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4.3. Cramér–Von Mises Estimation 

Let 𝑌𝑖 , 𝑖 = 1,2, … , 𝑛  be ordered observations taken from BEE random variables. The 

Cramér–Von Mises estimates of the parameters �̂�𝑪𝑽𝑴 and �̂�𝑪𝑽𝑴 are determined by 
minimizing the function that are given below 

𝐶𝑉𝑀(𝛼, 𝜆) =
1

12𝑛
+ ∑ [𝐹(𝑌(𝑖:𝑛)|𝛼, 𝜆) − 

2𝑖−1

2𝑛
]
2

𝑛
𝑖=1                         (31) 

𝐶𝑉𝑀(𝛼, 𝜆0) =
1

12𝑛
+ ∑ [1 − (1 − 𝑦(𝑖)

𝜆 )
𝛼

− 
2𝑖−1

2𝑛
]
2

𝑛
𝑖=1                     (32) 

Differentiate the eq. (32) with respect to  "𝜶" and "𝝀", the estimates of the 
parameters can be determined numerically by the following equations.  

∑ [1  −  (1 − 𝑦(𝑖)
𝜆 )

𝛼
− 

2𝑖−1

2𝑛
]𝑛

𝑖=1 ∆𝑠(𝑦(𝑖)|𝛼, 𝜆) = 0, 𝑠 = 1,2                    (33) 

Where ∆𝑠(𝑦(𝑖)|𝛼, 𝜆) are define in the section 5.2. 

4.4. Anderson–Darling Estimation 

Let 𝑌𝑖 , 𝑖 = 1,2, … , 𝑛  be ordered observations from sample from n BEE random 

variables. The Anderson–Darling estimates of the parameters �̂�𝑨𝑫 and �̂�𝑨𝑫 are determined 
by minimizing the function that are given below 

𝐴(𝛼, 𝜆) = −𝑛 −
1

𝑛
∑ (2𝑖 − 1)𝑛

𝑖=1 {𝑙𝑜𝑔𝐹(𝑥1:𝑛|𝛼, 𝜆) + 𝑙𝑜𝑔�̅�(𝑥𝑛+1−𝑖:𝑛|𝛼, 𝜆)}             (34) 

These estimators can be derived by solving the non-linear equations given below 

𝐴(𝛼, 𝜆) = −𝑛 −
1

𝑛
∑ (2𝑖 − 1)𝑛

𝑖=1 {𝑙𝑜𝑔 (1  − (1 − 𝑦(𝑖)
𝜆 )) + 𝑙𝑜𝑔(1 − 𝑦(𝑖)

𝜆 )}           (35) 

with respect to parameters 𝛼 and 𝜆. 

4.5. Percentile Estimation 

Let 𝑌𝑖 , 𝑖 = 1,2, … , 𝑛  be ordered observations from sample from n BEE random 
variables and  

𝑢𝑖 =
𝑖

𝑛+1
 is an unbiased estimate of 𝐹𝑌(𝑦(𝑖); 𝛼, 𝜆). The PC estimates of the BTCPE 

distribution parameters are derived by minimizing the following function: 

𝑃𝐶(𝛼, 𝜆) = ∑ [𝑦𝑖 −  Q(𝑦; 𝛼, 𝜆)]2𝑛
𝑖=1                                  (36) 

𝑃𝐶(𝛼, 𝜆) = ∑ [𝑦𝑖 − [1 − (1 − 𝑞)
1

𝛼⁄ ]
1

𝜆⁄
]

2

𝑛
𝑖=1                                 (37) 

with the parameters 𝛼 and λ. 

Simulation Study 

In this section a Monte Carlo simulation study is conducted by taking different 
samples sizes as 20, 40, 100, 200 and 400 with10,000 iterations. Biases, averages biases, 
mean squared errors (MSE) and mean relative errors (MRE) are calculated for parameters 
of the proposed distribution with different estimation methods discussed above. From table 
2, it can be observed that as sample size increases the MSE decreases for both parameters 
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for MLE, AD, CVM, OLS and WLS. Overall MLE is showing best results, then AD and WLS are 
second better estimates, OLS is the third one and CVM is last one, in the context of MSE’s. 

Table 2 
Average bias, bias, MSE and MRE for different parametric values 

Models  𝜶 = 1 𝜷 = 2 

20 40 100 200 400 20 40 100 200 400 

 
 

MLE 

Average Bias 1.7862 1.6346 1.5615 1.5233 1.5112 1.1360 1.0584 1.0300 1.0074 1.0035 
Bias 0.5004 0.3091 0.1817 0.1246 0.0879 0.2539 0.1625 0.1015 0.0679 0.0477 

MSE 0.5742 0.1938 0.0569 0.0257 0.0123 0.1268 0.0451 0.0167 0.0075 0.0036 

MRE 0.3336 0.2061 0.1212 0.0831 0.0586 0.2539 0.1625 0.1015 0.0679 0.0477 

 
AD 

Average Bias 1.6769 1.5713 1.5230 1.5172 1.4990 1.0546 1.0158 1.0066 1.0020 0.9995 
Bias 0.4737 0.3119 0.1917 0.1278 0.0900 0.2308 0.1652 0.1047 0.0710 0.0502 

MSE 0.6358 0.1809 0.0583 0.0268 0.0130 0.0935 0.0445 0.0168 0.0083 0.0040 

MRE 0.3158 0.2080 0.1278 0.0852 0.0600 0.2308 0.1652 0.1047 0.0710 0.0502 

 
 

CVM 

Average Bias 1.9203 1.6610 1.5540 1.5186 1.5129 1.1553 1.0621 1.0257 1.0077 1.0059 
Bias 0.6506 0.3873 0.2102 0.1422 0.1020 0.2986 0.1947 0.1205 0.0751 0.0569 
MSE 1.2950 0.3113 0.0792 0.0334 0.0163 0.1831 0.0665 0.0227 0.0090 0.0051 
MRE 0.4337 0.2582 0.1401 0.0948 0.0680 0.2986 0.1947 0.1205 0.0751 0.0569 

 
 

LS 

Average Bias 1.6227 1.5248 1.5240 1.5092 1.5130 1.0164 0.9904 1.0024 1.0028 1.0037 
Bias 0.5126 0.3375 0.2114 0.1415 0.1050 0.2472 0.1708 0.1179 0.0793 0.0560 

MSE 0.9253 0.2103 0.0734 0.0330 0.0173 0.1054 0.0477 0.0225 0.0098 0.0050 

MRE 0.3417 0.2250 0.1409 0.0944 0.0700 0.2472 0.1708 0.1179 0.0793 0.0560 

 
 

WLS 

Average Bias 1.6722 1.5664 1.5352 1.5206 1.5076 1.0466 1.0164 1.0142 1.0067 1.0013 
Bias 0.5176 0.3023 0.1854 0.1340 0.0899 0.2521 0.1669 0.1016 0.0725 0.0495 

MSE 0.7019 0.1659 0.0608 0.0290 0.0131 0.1157 0.0449 0.0176 0.0083 0.0039 

MRE 0.3451 0.2015 0.1236 0.0894 0.0599 0.2521 0.1669 0.1016 0.0725 0.0495 

 
Applications  

In this section, the applications of the BEED distribution are demonstrated, and its 
performance is compared to that of other competing distributions defined in the unit 
interval like Unit Burr-III (UBIII), Modi et al. (2019), Bounded M-O Extended Exponential. 
Gosh et al. (2019), Unit Gompertz, Mazucheli et al. (2019), Unit Lindley, Mazucheli et al. 
(2018) and Unit Weibull. The model selection approaches used in arriving at the optimal 
model are the Akaike information criterion (AIC) and Bayesian information criterion (BIC). 
The best model for these selection procedures is the one with the lowest test statistic. The 
datasets represent COVID-19 patient death rates in Canada and the United Kingdom (UK), 
as well as COVID-19 patient recovery rates in Spain. The first two datasets of UK and Canada 
were recently reported by Nasiru et al. (2022), and the third dataset of Spain is available in 
Afify et al. (2022).  

Table 3 shows descriptive information for COVID-19 mortality in the United 
Kingdom and Canada, as well as the recovery rate in Spain. Because of the kurtosis values, 
the datasets are platykurtic for each country. The mortality rate in the United Kingdom is 
skewed to the right, whereas it is skewed to the left in Canada. Spain's recovery rate is 
likewise skewed to the left. The boxplot of the datasets in Figure 4 also supports this. 

Table 3 
Descriptive statistics 

Countries UK Canada Spain 
Minimum 0.0807 0.1159 0.4286 
Maximum 0.5331 0.3347 0.8628 

Mean 0.2888 0.2305 0.7240 
Skewness 0.0489 -0.0873 -0.7049 
Kurtosis 1.9616 2.6537 2.6021 
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Figure 4. Box Plot of Covid-19 datasets 

 6.1. COVID-19 Mortality rate in UK 

Table 4 shows the log-likelihood (ℓ), AIC and BIC for the fitted distributions, as well 
as the ML estimates of the parameters and their standard errors in brackets. Due to the 
lowest values of AIC, BIC, AD, CAID and the highest value of log-likelihood, the BEE 
distribution provides the best fit to the UK mortality dataset. 

Table 4 
Model Selection Criteria and Parameter estimates for UK 

Model Parameters 𝓵 AIC BIC AD CAID 

BEED 

𝛼 = 2.6804 
(0.3008) 

𝜆 = 19.5817 
(6.4979) 45.8644 -87.7288 -83.5401 0.5956 0.5956 

UBIII 

𝛼 = 0.0758 
(0.0382) 

𝛽 = 13.3691 
(6.5426) 38.9028 -73.8056 -69.6170 0.6784 0.6784 

BMOEE 

𝛼 = 3.5711 
(0.4035) 

𝛽 = 101.7405 
(57.0214) 40.7201 -77.4402 -73.2515 1.3215 1.3215 

UW 

𝛼 = 3.1229 
(0.3047) 

𝛽 = 0.2834 
(0.0602) 42.5622 -81.1244 -76.9357 1.1678 1.1678 

UG 

𝛼 = 1.8208 
(0.2198) 

𝛽 = 0.0630 
(0.0274) 36.4368 -68.8736 -64.6849 1.8961 1.8961 

 

6.2. COVID-19 Mortality rate in Canada. 

Table 5 shows the ML estimates of the parameters, as well as the standard errors 
and model selection criteria for the fitted distributions. The BEE distribution, once again, 
gives the greatest fit to the Canada mortality dataset, as it has the highest log-likelihood and 
the lowest AIC, BIC, AD and CAID values. 
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Table 5 
Model Selection Criteria and Parameter estimates for Canada. 

Model Parameters 𝓵 AIC BIC AD CAID 

BEED 

𝛼 = 3.4100 
(0.2678) 

𝜆 = 112.7124 
(40.3173) 

-80.649 -157.3 -153.25 0.3264 0.0569 

UBIII 

𝛼 = 0.0721 
(0.1606) 

𝛽 = 11.2663 
(25.0812) 

-30.886 -57.772 -53.721 0.3376 0.0589 

BMOEE 

𝛼 = 3.8284 
(0.2514) 

𝛽 = 219.6406 
(73.8469) 

-69.658 -135.32 -131.26 0.6014 0.0916 

UW 

𝛼 = 6.1130 
(0.5832) 

𝛽 = 0.0567 
(0.0197) 

-79.951 -155.9 -151.85 1.4315 0.2312 

UG 

𝛼 = 3.4261 
(0.1839) 

𝛽 = 0.0040 
(0.0013) 

-74.314 -144.63 -140.58 2.2076 0.3677 

 

Figure 6 indicates that the BEE distribution provides a better fit to mortality for 
Canada than the other models because it better fits the PDF and CDF of the dataset than the 
other models. 

6.3. COVID-19 Recovery rate in Spain. 

Table 6 displays the ML estimates of the parameters, as well as their respective 
standard errors and model selection criteria for the fitted distributions. The BEE 
distribution provides the best fit to the Spain recovery rate dataset since it has the lowest 
AIC, BIC, AD and CAID values and the highest log-likelihood. 

Table 6 
Model Selection Criteria and Parameter estimates for Spain 

Model Parameters 𝓵 AIC BIC AD CAID 

BEED 

𝛼 = 8.0783 
(0.9470) 

𝜆 = 7.7385 
(2.0187) 58.8343 -113.6686 -109.2893 0.8388 0.1366 

UBIII 

𝛼 = 5.4397 
(0.7948) 

𝛽 = 2.0613 
(0.1723) 53.7963 -103.5927 -99.2134 1.5197 0.2575 

BMOEE 

𝛼 = 9.9962 
(1.2361) 

𝛽 = 22.0547 
(9.8519) 51.4637 -98.9275 -94.5482 1.7569 0.301 

UW 

𝛼 = 2.2317 
(0.2036) 

𝛽 = 8.6413 
(1.6964) 53.9658 -103.9316 -99.5523 1.5036 0.2538 

UG 

𝛼 = 3.8481 
(0.6024) 

𝛽 = 0.2793 
(0.1059) 46.0284 -88.0569 -83.6776 2.2896 0.3857 

 
Quantile Regression 

In this section the quantile regression model is developed using the BEED. When the 
response variable specified in the unit interval is skewed or polluted with outliers, the beta 
regression model, which represents the response variable's conditional mean, becomes 
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unreliable. To model the impact of variables on the response variable, a strong regression 
model is required. In this section, a quantile regression model is developed for modelling 
the response variable's conditional quantile. Given the BEED distribution's quantile 
function, the PDF may be re-parameterized in terms of its quantile function. 

Suppose 𝜔 = 𝑄(𝑦;  𝛼, 𝜆) then 𝜆 =
𝑙𝑜𝑔[1 − (1−𝑞)

1
𝛼⁄ ]

log (𝜔)
. So, the PDF and CDF of re-

parameterized distribution named as bounded exponentiated exponential quantile 
regression model (BEEDQRM) is given below 

𝑓(𝑦; 𝛼, 𝜆) = 𝛼 [
𝑙𝑜𝑔{1 − (1−𝑞)

1
𝛼⁄ }

log (𝜔)
] 𝑦

[
𝑙𝑜𝑔{1 − (1−𝑞)

1
𝛼⁄ }

log (𝜔)
.−1]

[1 − 𝑦

𝑙𝑜𝑔{1 − (1−𝑞)
1

𝛼⁄ }

log (𝜔)
.
]

𝛼−1

      (38) 

and 

𝐹(𝑦; 𝛼, 𝜆) = 1 − [1 − 𝑦

𝑙𝑜𝑔{1 − (1−𝑞)
1

𝛼⁄ }

log (𝜔) ]

𝛼

                            (39) 

Here "𝝎" is the parameter of quantile. The BEED quantile is express as  

𝑔(𝜔𝑖) = 𝑧𝑖
′𝜃 

where 𝑧𝑖
′ = (1, 𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝑝 ) are the ith covariate vectors, 𝜃 = (𝜃𝑜, 𝜃1, … , 𝜃𝑝)

′
is the 

vectors of unknown parameters.  

The covariates are linked to the conditional median of the dependent variable Y 
using the link function. The logit link function is used to link the covariates to the conditional 
quantile 

 𝑦 ∈  [0,1]. So, we have 

𝑔(𝜔𝑖) = 𝑙𝑜𝑔𝑖𝑡(𝜔𝑖) = 𝑙𝑜𝑔 (
𝜔𝑖

1 − 𝜔𝑖
) 

we can write further as 

𝜔𝑖 =
𝑒𝑥𝑝(𝑧𝑖

′𝜃)

1 + 𝑒𝑥𝑝(𝑧𝑖
′𝜃)

 

Substitute the 𝜔𝑖 in the Eq. (38) and we get 

𝑓(𝑦; 𝛼, 𝜆) = 𝛼 [
𝑙𝑜𝑔{1 − (1−𝑞)

1
𝛼⁄ }

log (𝜔)
] 𝑦

[
𝑙𝑜𝑔{1 − (1−𝑞)

1
𝛼⁄ }

log (𝜔)
.−1]

[1 − 𝑧𝑖]
𝛼−1                    (40) 

where 𝑧𝑖 = 𝑦
𝑖

[
𝑙𝑜𝑔{1 − (1−𝑞)

1
𝛼⁄ }

log (𝜔)
]

.  

The log likelihood for determining the BEEDQRM parameters is provided by 
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ℓ = ∑𝑙𝑜𝑔

𝑛

𝑖=1

[(𝛼)
𝑙𝑜𝑔 {1 – (1 − 𝑞)

1
𝛼⁄ }

log(𝜔𝑖)
] + ∑[

𝑙𝑜𝑔 {1 – (1 − 𝑞)
1

𝛼⁄ }

log(𝜔𝑖)
− 1] 𝑙𝑜𝑔(𝑦𝑖)

𝑛

𝑖=1

+ (𝛼 − 1)𝑙𝑜𝑔(1 − 𝑧𝑖) 

(41) 

where 𝑧𝑖  is define above.  

The parameters of the regression equation are estimated by directly maximizing the 
log likelihood function. The parameters will be denoted by �̂� and �̂� of 𝛼 and 𝜃 respectively. 

  

 

 

 

 

 

Figure 8. PDF plot of BEEQRM for some selected parameter and quantile values 

From figure 8, it can be observed that BEEDQRM is showing a variety of shapes for 
different values of parameters. BEEDQRM shows right/left skewed, symmetric and U 
shaped.  

The survival function and the hazard function of BEEQRM are given as   

S(y) = [1 − 𝑦

𝑙𝑜𝑔{1 − (1−𝑞)
1

𝛼⁄ }

log (𝜔) ]

𝛼

                                                  (42) 

ℎ(𝑦) =

𝛼 [
𝑙𝑜𝑔{1 − (1−𝑞)

1
𝛼⁄ }

log (𝜔)
]𝑦

[
𝑙𝑜𝑔{1 − (1−𝑞)

1
𝛼⁄ }

log (𝜔)
.−1]

[
 
 
 
1−𝑦

𝑙𝑜𝑔{1 − (1−𝑞)
1

𝛼⁄ }

log (𝜔)
.

]
 
 
 
𝛼−1

[
 
 
 
1−𝑦

𝑙𝑜𝑔{1 − (1−𝑞)
1

𝛼⁄ }

log (𝜔)

]
 
 
 
𝛼                (43) 

 

  

 

 

 

Figure 9. HRF plot of BEEQRM for some selected parameter and quantile values 
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Applications of Quantile Regression for BEED 

In this section the applications of quantile regression are presented using the 
bounded exponentiated exponential quantile regression model (BEEDQRM). The data is 
taken from Petterle et al (2020). The response variable is fat percentage (as said earlier that 
it should be with in unit interval), the response variable is recorded in five regions including 
android, arms, gynoids, legs, and trunk, and independent variables are age (in years), body 
mass index (in kg/m2), gender (male/female), and IPAQ (sedentary (S), insufficiently active 
(I), or active (A)). Table 7 presents ML estimates, standard errors (SE), and p-value. A level 
of significance of 5% is used 

Table 7 
ML estimates, standard errors, p-value lower limit (LL), upper limit (UL), and t score 

for quantile regression 
Quantiles Estimates SE t score LL (95%) UL (95%) P value 

𝒒 = 𝟎. 𝟏 
 
 

𝜃𝑜  (Intercept) -0.3983 0.1504 -2.6479 -0.7339 -0.1417 0.0085 

𝜃1 (BMI) 1.5509 0.3055 5.0767 0.9807 2.1831 0.0000 

𝜃2   (IPAQ) -0.5503 0.2366 -2.3260 -1.0769 -0.1456 0.0207 

𝜃3 (ARMS) 0.1981 0.0445 4.4493 0.1174 0.2926 0.0000 

𝒒 = 𝟎. 𝟐𝟓 
 
 

𝜃𝑜  (Intercept) -0.6946 0.1024 -6.7831 -0.8453 -0.4422 0.0000 

𝜃1 (BMI) 2.5972 0.2633 9.8631 2.0383 3.0747 0.0000 

𝜃2   (IPAQ) -1.9125 0.2261 -8.4590 -2.3388 -1.4489 0.0000 

𝜃3 (ARMS) 0.3846 0.0707 5.4364 0.1957 0.4742 0.0000 

 
𝒒 = 𝟎. 𝟓 

 

𝜃𝑜  (Intercept) -0.6946 0.1024 -6.7831 -0.8453 -0.4422 0.0000 

𝜃1 (BMI) 2.5972 0.2633 9.8631 2.0383 3.0747 0.0000 

𝜃2   (IPAQ) -1.9125 0.2261 -8.4590 -2.3388 -1.4489 0.0000 

𝜃3 (ARMS) 0.3846 0.0707 5.4364 0.1957 0.4742 0.0000 

 
𝒒 = 𝟎. 𝟕𝟓 

 

𝜃𝑜  (Intercept) -0.6946 0.1024 -6.7831 -0.8453 -0.4422 0.0000 

𝜃1 (BMI) 2.5972 0.2633 9.8631 2.0383 3.0747 0.0000 

𝜃2   (IPAQ) -1.9125 0.2261 -8.4590 -2.3388 -1.4489 0.0000 

𝜃3 (ARMS) 0.3846 0.0707 5.4364 0.1957 0.4742 0.0000 

𝒒 = 𝟎. 𝟗 
 
 

𝜃𝑜  (Intercept) -0.6946 0.1024 -6.7831 -0.8453 -0.4422 0.0000 

𝜃1 (BMI) 2.5972 0.2633 9.8631 2.0383 3.0747 0.0000 

𝜃2   (IPAQ) -1.9125 0.2261 -8.4590 -2.3388 -1.4489 0.0000 

𝜃3 (ARMS) 0.3846 0.0707 5.4364 0.1957 0.4742 0.0000 

 
Conclusion   

In this research the bounded exponentiated exponential distribution is proposed for 
unit interval data sets. The shape of BEE distribution is symmetric, left skewed, right 
skewed, reversed J shape. The HRF shows the bathtub and increasing shapes. These variety 
of shapes makes the BEE distribution a suitable model for modeling data sets that exhibit 
such traits. Few properties of the BEE distribution, including cdf, quantile function, median, 
moments, inequality measures, reliability measures and order statistics have been studied. 
Six estimations methods to estimate the parameters of the BEE distribution have been 
discussed. To check the performance of the estimators a Monte Carlo simulation had been 
done. A bivariate extension of the BEE distribution has also been discussed, and only pdf 
and cdf for it has been shown with their graphs as well. The applications of the BEE 
distribution have been shown on the three datasets on the mortality rates and recovery 
rates of COVID-19, in UK, Canada and Spain. The three data sets revealed that the proposed 
distribution (BEED) performs better that the other competing distributions. Finally, a 
quantile regression model for studying the relationship between the conditional quantiles 
of a bounded response variable and a set of covariates is proposed. The survival and hazard 
functions of the BEEDQRM have been derived. The graphical shapes for the pdf, cdf and HRF 
for the BEEDQRM have been shown. An application for quantile regression is presented to 
show the applicability of BEED quantile regression.  
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